
Risk of Re-identification Based on Euclidean distance in Anonymized Data PWSCUP2015

Satoshi Ito, Hiroaki Kikuchi Meiji University Graduate School

Anonymization: method to modify the personal datasets so that individuals cannot be identified.

Dataset with personal data

name	age	goods	payment
H. Kikuchi	27	coffee	320
S. Ito	23	tea	280

Anonymized dataset

ID	age	goods	payment
1	20 s	beverage	300
2	20 s	beverage	200

Re-identification: method to identify individuals from the anonymized dataset.

Anonymized dataset

ID	age	goods	payment
1	20 s	beverage	300
2	20 s	beverage	200

ID1 = H. Kikuchi ID2 = S. Ito

Quasi-Identifier (QI): a discrete attribute that can be used to identify individuals when being combined.

(e.g. age, sex, address)

Sensitive Attribute (SA): a continuous attribute that we should be treated carefully.

(e.g. name of diseases, yearly income, expenses)

Dataset with personal data

name	age	goods	payment
H. Kikuchi	27	coffee	320
S. Ito	23	tea	280

QI SA

Anonymized data and PWSCUP

In Japan, the act on the protection of personal information was amended in September 2015.

And the data anonymization competition PWSCUP has been held since 2015.

PWSCUP 2016

PWSCUP 2017

Problem 1: The existing Re-identification methods

In the PWSCUP 2015, four re-identification methods were used to evaluate the security of anonymized dataset.

Method	Details
identify.rand	Identify user randomly.
identify.sa	Identify user from 1 sensitive attribute (SA) of dataset.
identify.sort	Identify user by sorting sum of SA.
identify.sa21	Identify user from a specific SA.

The qualities of these methods are not good enough to re-identify because these methods use too less attribute of dataset to re-identify.

Problem 2: The de-identified dataset of PWSCUP2015

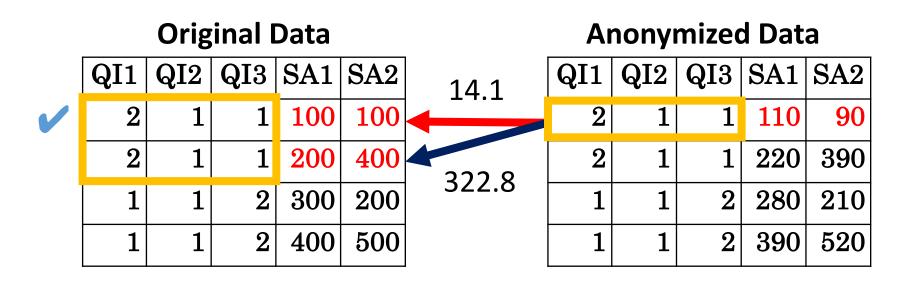
In the competition, a total of 24 anonymized datasets were submitted from 13 teams.

In our research, we use 12 datasets from 5 teams.

Data	Team	Rank
D_1,D_2	T_A (Meiji University)	
D_3 , D_4	T_B	2
D_5 , D_6	T_{C}	
D_7 , D_8 , D_9	T_D	1
D_{10} , D_{11} , D_{12}	T_E	3

However, since only anonymized data were evaluated without the source code, algorithms used to generate these datasets were unknown.

Our approach


- 1. The qualities of the existing methods are not good.
 - →We propose a new Re-identification method based on the Euclidean distance and compare our method with the existing methods for the dataset of PWSCUP2015.

- 2. The anonymization methods of the anonymized dataset of PWSCUP2015 are unknown.
 - →We observe the properties of the single method for smaller test data and estimate the algorithm used in the competition based on the known properties.

Our method: identify.euc

identify.euc

Our method identifies individuals by Euclidean distance between values of SA.

Difference between our method and the existing method

50

203.96

The existing method: identify.sa

Original Data

	QI1	QI2	QI3	SA1	SA2	
	2	1	1	100	100	•
	2	1	1	110	300	4
	1	1	2	300	200	
İ	1	1	2	400	500	

Anonymized Data

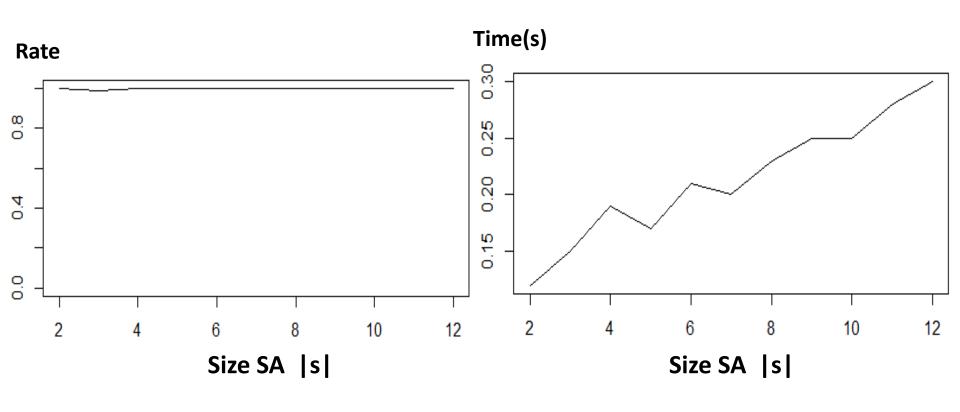
QI1	QI2	QI3	SA1	SA2
2	1	1	150	100
2	1	1	160	300
1	1	2	350	200
1	1	2	450	500

Our method: identify.euc

Original Data

QI1	QI2	QI3	SA1	SA2
2	1	1	100	100
2	1	1	110	300
1	1	2	300	200
1	1	2	400	500

Anonymized Data


QI1	QI2	QI3	SA1	SA2
2	1	1	150	100
2	1	1	160	300
1	1	2	350	200
1	1	2	450	500

Result of re-identification rate

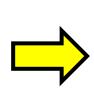
			Our		
Data	id-rand	id-sa	id-sort	id-sa21	EUC1
D_1	0.033	0.824	1.000	0.186	0.301
D_2	0.649	0.651	0.001	0.002	0.478
D_3	0.199	0.241	0.248	0.051	0.207
D_4	0.189	0.240	0.253	0.045	0.211
				0.000	0.074
D_6	0.000	0.022	0.000	0.000	0.074
Our propo	sea mei	inod is t	ne best	0.001	0.876
average rat	e for the	ese meth	nods and	0.000	0.001
re-identify	well fo	r most c	of data	0.000	0.002
D_{10}	0.006	0.007	0.000	0.000	0.004
				0.000	0.008
D_{12}	0.021	0.021	0.000	0.000	0.008
Average	0.093	0.172	0.126	0.024	0.187
Standard	0 174	0.350	0.200	0.050	0.242
Deviation	0.174	0.258	0.268	0.050	0.243
Best Score	2	3	3	0	5

Performance of our proposed method

We show the performance of our proposed method with small data.

Analysis about anonymized data

We guess what anonymization methods were used in $D_1,...,D_{12}$ based on the result of known datasets data $D_A,...,D_H$.


Data	Method	Target
D_{A}	K-anonymization	QI
$D_{ m B}$	Adding noise to SA	SA
D_{C}	Cheating attack	ID
$D_{ m D}$	Unification QI 1	QI
$D_{ m E}$	Unification QI 2	QI
$D_{ m F}$	Averaging SA	SA
D_{G}	Swapping QI	SA
$D_{ m H}$	Deleting records	Record

Data	Method
D_1	?
D_2	?
D_3	?
D_4	?
D_5	?
D_6	?
D_7	?
D_8	?
D_9	?
D_{10}	?
	?
$\begin{array}{c c} D_{11} \\ \hline D_{12} \end{array}$?

Examples of de-identification methods

K-anonymization

QI1	QI2	QI3	SA1	SA2
2	1	1	100	100
2	1	2	200	400
1	1	1	300	200
1	1	2	400	500

QI1	QI2	QI3	SA1	SA2
2	1	1	100	100
2	1	1	200	400
1	1	1	300	200
1	1	1	400	500

Averaging SA

QI1	QI2	QI3	SA1	SA2
2	1	1	100	100
2	1	1	200	400
1	1	1	300	200
1	1	1	400	500

QI1	QI2	QI3	SA1	SA2
2	1	1	150	250
2	1	1	150	250
1	1	1	350	350
1	1	1	350	350

Effect of combination methods

	knov	wn	unknown
	D_A	D_F	D_{10}
Method	K-anony	Averaging	K-ano + Ave
U1	-	-	-
U2	negative	-	negative
U3	negative	-	negative
U4	-	negative	negative
U5	-	negative	slightly
U6	-	-	-
S1	positive	negative	positive
S2	positive	negative	positive
E1	slightly	negative	slightly
E2	slightly	negative	slightly
E3	negative	positive	positive
E4	negative	positive	positive
EUC1	slightly	negative	positive

Res	Result 2: Evaluation and Prediction of data of PWSCUP2015											
	D_1	D_2	D_3	D_4	D_5	D_6	D_7	D_8	D_9	D_{10}	D_{11}	D_{12}
U1	-	-	-	-	-	-	-	-	-	-	-	-
U2	negative	-	negative	negative	-	-	negative	-	-	negative	negative	negative
U3	negative	-	slightly	slightly	-	-	slightly	-	-	negative	negative	slightly
U4	-	slightly	-	slightly	slightly	slightly	slightly	slightly	slightly	negative	negative	negative
U5	-	slightly										
U6	-	-	-	-	-	-	-	-	-	-	-	-
S1	-	-	slightly	slightly	-	-	slightly	-	-	positive	positive	slightly
S2	-	-	slightly	slightly	slightly	positive						
E1	slightly	negative	negative	negative	positive	positive	positive	positive	positive	slightly	slightly	slightly
E2	negative	negative	negative	negative	slightly	slightly	slightly	positive	positive	slightly	slightly	slightly
E3	negative	positive	negative	negative	positive							
E4	negative	positive	slightly	slightly	positive							
$\overline{EUC1}$	negative	negative	negative	negative	slightly	slightly	negative	positive	positive	positive	positive	positive
D_a	-	-	×	×	-	-	×	-	-	×	×	×
D_b	-	-	-	-	-	-	-	-	-	-	-	-
D_c	-	-	-	-	×	×	-	×	×	-	-	-
D_d	-	-	-	-	×	×	×	-	-	-	-	-
D_e	×	-	-	-	-	-	-	×	×	-	-	-
$\overline{D_f}$	-	×	-	-	-	-	-	-	-	×	×	×

Χ

Χ

Χ

 D_g

 D_h

Χ

Χ

Result 2: Evaluation and Prediction of data of PWSCUP2015

	D_1	D_2	D_3	D_4	D_5	D_6	D_7	D_8	D_9	D_{10}	D_{11}	D_{12}
U1	-	-	-	-	-	-	-	-	-	-	-	-
U2	negative	-	negative	negative	-	-	negative	-	-	negative	negative	negative
$\overline{U3}$	negative	-	slightly	slightly	-	-	slightly	-	-	negative	negative	slightly
$\overline{U4}$	-	slightly	-				slightly	slightly	slightly	negative	negative	negative
$\overline{U5}$	-	slightly	slightly		Grou	p 1	slightly	slightly	slightly	slightly	slightly	slightly
U6	-	-	-	EUC	1 is e	ffecti	ve -	-	-	-	-	-
$\overline{S1}$	-	-	slightly	slightly		-	slightly	-	-	positive	positive	slightly
$\overline{S2}$	-	-	slightly	slightly	slightly	positive	positive	positive		positive	positive	positive
E1	slightly	negative	negative	negative	positive	positive	positive	positive		Grou	onguviy	slightly
$\overline{E2}$	negative	negative	negative	negative	slightly	slightly	slightly	positive	K-a	nonyn	nizatio	onghtly
E3	negative	positive	negative	negative	positive	positive	positive	positive	positive	Averag	ing S	positive
$\overline{E4}$	negative	positive	slightly	slightly	positive							
$\overline{EUC1}$	negative	negative	negative	negative	slightly	slightly	negative	positive	positive	positive	positive	рошите
D_a	-	-	×	×	-	-	×	-	-	×	×	×
D_b	-	-	-	-	-	-	-	-	-	-	-	-
D_c	-	-	-	-	×	×G	roup 2	×	×	-	-	-
D_d	-	-	-	-	×		X		-	-	-	-
D_e	×	-	-	-		meati	ng + C	Julei	×	-	-	-
$\overline{D_f}$	-	×	-	-					_	×	×	×
$\overline{D_g}$	-	-	×	×	-	-	×	×	×	-	-	-
D_h	-	-	-	-	-	-	-	-	-	-	-	-

Result 2: Evaluation and Prediction of data of PWSCUP2015

 D_4

	_	_	_	_	<u> </u>	Ü			Ü		10		12
U1	-	-	-	-	-	-		-	-	-	-	-	-
U2	negative	-	negative	negative	-	-	neg	ative	-	-	negative	negative	negative
U3	negative	-	slightly	slightly	-	-	slig	htly	-	-	negative	negative	slightly
U4	-	slightly	-	slightly	slightly	slightly	slig	htly	slightly	slightly	negative	negative	negative
U5	-	slightly	slightly	slightly	slightly	slightly	slig	htly	slightly	slightly	slightly	slightly	slightly
U_6	_	_		_	_			_	-	-	-	-	-
S1								htly	-	-	positive	positive	slightly
S2	_s won	thoh	oct ar	ONVE	horiz	datai	pos	itive	positive	positive	positive	positive	positive
E1	8 WOII			педануе		uata	pos	itive	positive	positive	slightly	slightly	slightly
E2		the	PWSC	UP20	15. Ly			htly	positive	positive	slightly	slightly	slightly
E3	All da	ta in t	he gro	oup 2	are ra	nked	pos	itive	positive	positive	positive	positive	positive
E4			in PW	aliabtler				itive	positive	positive	positive	positive	positive
EUC1	negative	ignei		JCOP	2013	slightly		ative	positive	positive	positive	positive	positive
D_a								(-	-	×	×	×
D_b	-	-	-	-	-	-		-	-	-	-	-	-
D_c	-	-	-	-	×	×		-	X	×	-	-	-
D_d	-	-	-	-	×	×	>	×	-	-	-	-	-
D_e	×	-	-	-	-	-		-	X	×	-	-	-
D_f	-	×	-	-	-	-		-	-	-	×	×	×
D_g	-	-	×	×	-	-	>	×	X	×	-	-	-
D_h	-	-	-	-	-	-		-	-	-	-	-	-

Conclusion

 We have proposed a new Re-identification method based on Euclidean distance. Our method works best in 5 out of 12 anonymized data of PWSCUP2015 and better than any the existing methods in re-identification rate.

 We guess unknown algorithms used to process 12 data of PWSCUP2015. Our analysis reveals that the Cheating anonymization with other methods performs better.

Cheating attack

Cheating attack:

De-identification method exchange ID of data.

Original Data

ID	QI1	QI2	QI3	SA1	SA2
1	2	1	1	100	100
2	2	1	1	200	400
3	1	1	2	300	200
4	1	1	2	400	500

Anonymized data

ID	QI1	QI2	QI3	SA1	SA2
2	2	1	1	100	100
3	2	1	1	200	400
4	1	1	2	300	200
1	1	1	2	400	500